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t Niihama National College of Bchnology, Niihama 792, Japan 
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Abslraet Group lheoretically possible spin density waves (sDw) of the Hubbard model 
on a hiangular lattice are found and classified Cor ordering vectors q of K and hi 
in lhe BriUouin mne bj iinding the maximal subgroup of the w m e l r y  p u p  of 
the Hamiltonian. It is found that dasifications of 9)ws with these ordering w t o m  are 
reduced IO dasiftcations of 9)wa on molecules with DS and Td symmetries, mpectiveiy. 
Fmm this reduction we bund WO axial-type 9)w (.\sow) and one plane-* SDW (EDw) 
for p i n l  K and three AmW$ huo RDw and one Nbic- (threedimensional-) type SDW 
( W w )  for p i n l  M. The standard mean-field Hamiltonians and lheir invariance p u p s  
are listed for each daw 

1. Introduction 

Recently, the Hubbard model on a triangular lattice has been studied in order to 
understand the behaviour of adsorbed 3He on a substrate [I]. In order to discuss 
the possible types of long- or short-range orders realized in different Nlings in this 
system, in this paper we find and classify various spin density wave (sDW) solutions 
of the model. 

'Ib perform such a work the group theoretical approach developed by Fukutome 
and Omki [ 2 4  provides a useful tool. They classified the HartreeFcck (HF) solu- 
tions of the Hamiltonian with the symmetry 

Go = r x S x T (1) 
where r is the space group of the lattice structure, S is the group of the spin rotation 
and T is the group of the time reversal. When the electron-electron interaction 
is weak, its HF solution has the invariance group Go. This solution is called the 
restricted HF (W) solution. As the interaction increases, the RHF solution becomes 
unstable and solutions with the lower symmetries or the symmetries of the subgroups 
of Go bifurcate. These solutions are called unrestricted HF (UHF) solutions. We can 
characterize a HF solution I@) of a Slater determinant by the invariance group which 
is defined by 

G = {g E Go I gI@) = exp(iag)l@)) (24 
or equivalently 

G ={g  E Go I gHMF = HMF) 
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where exp(ia,) is a phase factor and HMF is the mean-field Hamiltonian corre- 
sponding to I@). So, we can find and clas@ UHF solutions by Ending and classifying 
the subgroups of Go. 

A lkawa and M (hahi 

2. Formulation 

The Hubbard Hamiltonian is given by 

where aI.,(a*,) is the operator which creates (annihilates) an electron of spin U at 
site t. t o ( r )  is the hopping parameter between atoms t + 7 and t. With the use of 
the momentum and spinor representation 

the mean-field Hamiltonian can be written as 

H,, = x t ( k ) z i z k  -k x: (E 6!+q1zaiak-q/2 I 

k i=o,z,y,r q k 

The X: are determined by the self-consistent field (SCF) conditions 

U . U  
(6) xo = -p  o(n) x: = - p ( q )  j = x , y , z  

where u0 = 1 and ci ( i  = ~ , y ,  z )  are 2 x 2 Pauli matrixes, and 

pi (q )  are order parameters characterizing the HF solutions. If there is no symmetry 
breaking, all the pi (q )  except po(0 )  are equal to zero. 

Charge ( i  = 0 )  and spin ( i  = I, y, z )  densities are given by 

If po(q) is not zero, the HF solution has a charge density wave (CDW) with wavevector 
q. If pi (g)  ( i  = z,y,z)  is not zero, the HF solution has a SDW with wavevector q. 
Moreover, SDW solutions can be classified into three types according to the dimension 
of the mmponent of the spin, that is axial (one), plane (two) and cubic (three) types. 
We call them ASDW, PSDW and CSDW, respectively. 

The HF energy can be written as 
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From this expression we can see that the spin modulation p i ( q )  ( i  = x,y,z) is 
stabilized while the charge modulation p o ( q )  is not favourable by pasitive U .  Then 
we ody consider the dassification of SDW solutions. 

From equation (5) the bases of the order parameters spaces are 

Noting that 

we can define new Hermitian bases 

If -q is equivalent to q then l i ,q  = &. 
Thus, HMF can be determined by a vector in the vector space V, = [l$q,i = 

0 ,  +, y, 4, that is the space spanned by ltq over the real number field. Moreover, V, 
is the representation space of the symmey group Go = r x S x T of the Hamiltonian 
(3). g E Go transform l z q  as follows. 

(i) Panslation: 

(ii) Space rotation and inversion: 

where R(a)  is the three-dimensional representation of the rotation a. 
(iii) Spin rotation: 

where u(e, 0) is the spin rotation around e by angle 0 and R(u(e, e ) )  is its three- 
dimensional rotation matrix. 

(iv) T i e  reversal: 

(16) tz+ = - I f  * 
979 >,q ( j  = "rY,Z) tlo,q - o,q- 

From equations (12) and (14), lEq and l;q have even and odd parities, respectively. 
Since all broken-symmey phases with a single order parameter can be derived 

from irreducible representations in the representation space Vo [3, 41, we consider 
the SDW solutions belonging to an irreducible representation space V, in 4. Using 
Michel's theorem [5, 61, possible SDW solutions can be found by looking for the point 
U E V, such that the invariance group G, of U: 

G , = { ~ E G ~ ~ ~ u = u , u E V , }  (17) 

is maximal. 
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3. Classificntion of mws in a triangular Lattice 

Now we apply this method to a lriangular lattice. Tbe space symmetry of the trian- 
gular lattice is 

A lkawa and M Ozaki 

r =  L(t , , t , )hD, , .  (18) 

Its fundamental translation vectors t ,  and t b  are defined in figure l(a). As we treat 
the single band model on the primitive two-dimensional lattice, it is sufficient to treat 
the space group with the proper rotational group, Le. r = L ( t , , t b )  A D,. mi & 
because the inversion of the space is equivalent to the C, rotation around the axis 
perpendicular to the plane. In figure l(a) we also d e h e  two folded rotational axes 
in the plane and I and y axes. In figure l(b) we show the reciprocal lattice vectors 
G, and Gb and the first Brillouin zone. We find the possible SDW solutions which 
belong to the irreducible representations characterized by pints K and M. 

Figure L Fundamental lranslational wuIn (t. and t$ and hvo folded mlational axes 
(1'. Z', 3', I", 2" and 3") (a); and fundamental lecipmeal lattice wtolr (G-, and 
06) and the filrr Bnllouin zone of the huodimensional uiangular lattice (b). 

3.1. mws charactetized by pint K 
The order parameter space characterized by point K (rigorously K and K') is 

(1%) VK = [ l i Q ,  f 

Q = +(G, f Gb). 

G V ( K )  = L3 D!3 (zoa) 

L3= L(2ta + t b , t , z  f 2 t b )  DL = {~,C~~,C~=,CZ~,,C~~,,CZ~,}. (206) 

i = o , I , y , z ]  

where 

(1%) 

Any SDW in V, has the spatial symmetry 

where 

GV(,)  is a normal subgroup of r. Since I'/GV(% z, D3, the classikation of 
SDWs characterized by point K is reduced to the class Catton of SDWS in a molecule 



3.2 SDWS charactetized by pin& M 
Ihe order parameter space characterized by point M (M,, M2 and M3) is 

V(M)=[l&(,,,), i=O,r ,y ,z ;  m=1,2 ,3 ]  (214 

where 

Q(1) = $6, Q(2) = -fG, + $GB Q(3) = -466. (216) 
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lbbk 2 ?he ader parameter spaces for the SDWS characferircd p i n k  M and K. 
?he name d each SDW mmsponds to thal in lable 1 and Bgum 2 and 3. V U the 
spa- chamdelizing the SDW and V‘ is the one inevilably accompanying the V. Q and 
Q(m) arc de6ned in the I a L  e;, and e;,, a= unit Veetom di&ed to the i‘ and i“ 
la- nspeetively. 

SDW V V’ 

‘t, ._ 

0\ I / \  

I 

I 

I 

0\ 

/ \  
‘ I  
/ \  

/ \  

a b C 

Figure 2 Schematic SDW ptlems on the triangular Mice  charartelized by points K and 
K’ and their mrrerponding patlcms on the molecule wilh 0, sym” (a) hsDw~,  (b)  
GDW~,  (c) FSDW. Full uiangles indicak the ccntm of the invariance group given in 
table 2 @en and full dlcles show di6eerent charge densities. The ryr axes for the 
spins are the fame as those shown in figure 1. The dircefions oi the spins in the GDW 
and m w  stater are perpendicular and parallel to the plane, respectively. 

Any SDW characterized by M always has the spatial symmetry 

GV(M) = L4 A c2 (224 

L, = L(2 t , , 2 t6 )  c, = {l,c*z}. ( 2 3 )  

where 

Gv(M) is one of the normal subgroups of r. Since II/GVtM) T, , the classification 
of SDWS characterized by M is reduced to the classiIicatton m a molecule with T, 
symmetry 13, 41. We list in tables 1 and 2 the order parameter spaces and their 
invariance groups which are found. In figure 3 we show their spin and charge density 
patterns on the triangular lattice with the corresponding patterns on the molecule 
with T, symmetry. 
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Figure 3. SLhematic s w  patterns on the triangular lattice Baracterized by points MI, 
Ma and lrq and their mnespondmg patterns on the molecule wilh the sy"ary Td: 
(0) m w ~ ,  (b) ASDwz, (c) AsDwa, (d) m w ~ .  (e) PSDWZ and (f) CSDW. 'ne zyr axes 
for spins are, except in (e) and (fh the same as those shown in figure 1. The z y r  axes 
in (e) and (f) are shm in the inseh 

ASDW~, PSDW~ and (SDW are antiferromagnetic and all sites on them are equi- 
valent. They are also characterized by one, two and three p and can be called single, 
double and triple-p states, respectively [SI. The other solutions are accompanied by 
CDWs. ASDW2 and PSDWl are antiferromagnetic and ASDW, is ferrimagnetic. 

From table 2 and equation (S), we can i"edk3telJf get the HMF. l%r example, 
IfMF for ASDWl(K) is 

x t ( k ) * i z k + X i  x * !a , *k+X& c * : + q / ~ ~ z ~ k - Q / 2 + ~ ~  c * : + q / 2 * k - q / 2 .  

X h k b 

(U) 

The three order parameters X i ,  X& and X ,  are determined by the SCF conditions 
given by equations (6) and (7). 

In summary we have found out the possible SDWS on the triangular lattice which 
are characterized by points K and M. The results are listed in tables 1 and 2 and 
in figures 2 and 3. Our method naturally gives the mean-field Hamiltonian for each 
solution which includes a few order parameters determined by the SCF condition. 
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